
SD1D Documentation
Release 0.1.0

The BOUT++ team

Jun 09, 2023





CONTENTS

1 Getting started 3
1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Non-uniform mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Outputs 7

3 Plasma model 9
3.1 Heat conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Boundary conditions 11
4.1 Upstream: Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Downstream: Sheath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Neutral model 13
5.1 Diffusive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Neutral fluid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Sources and transfer terms 15
6.1 Transfer channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Atomic cross sections 19

8 Numerical methods 21
8.1 Advection terms ∇ ·

(︀
b𝑉||𝑓

)︀
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.2 Artificial viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



ii



SD1D Documentation, Release 0.1.0

This is a model of a 1D fluid, assuming equal ion and electron temperatures, no electric fields or currents.

CONTENTS 1



SD1D Documentation, Release 0.1.0

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

First get a copy of development branch of BOUT++. You can download a tarball from https://github.com/boutproject/
BOUT-dev, but it is strongly recommended you use Git:

$ git clone https://github.com/boutproject/BOUT-dev.git

Configure and make BOUT-dev, including SUNDIALS. This is available from http://computation.llnl.gov/projects/
sundials, and is needed for preconditioning to work correctly.

$ cd BOUT-dev
$ ./configure --with-sundials
$ make

The user manual for BOUT++ is in subdirectory of BOUT-dev called “manual”, and contains more detailed instructions
on configuring and compiling BOUT++. This will build the core library code, which is then used in each model or test
case (see the examples/ subdirectory)

Next download a copy of SD1D into the BOUT-dev/examples subdirectory. This isn’t strictly necessary, but it makes
the “make” command simpler (otherwise you add an argument BOUT_TOP=/path/to/BOUT-dev/ to make)

BOUT-dev/examples/$ git clone https://github.com/boutproject/SD1D.git
BOUT-dev/examples/$ cd SD1D
BOUT-dev/examples/SD1D $ make

Hopefully you should see something like:

Compiling sd1d.cxx
Compiling div_ops.cxx
Compiling loadmetric.cxx
Compiling radiation.cxx
Linking sd1d

Here the main code is in “sd1d.cxx” which defines a class with two methods: init(), which is run once at the start of
the simulation to initialise everything, and rhs() which is called every timestep. The function of rhs() is to calculate
the time derivative of each evolving variable: In the init() function the evolving variables are added to the time
integration solver (around line 192). This time integration sets the variables to a value, and then runs rhs(). Starting
line 782 of sd1d.cxx you’ll see the density equation, calculating ddt(Ne). Ne is the evolving variable, and ddt() is
a function which returns a reference to a variable which holds the time-derivative of the given field.

BOUT++ contains many differential operators (see BOUT-dev/include/difops.hxx), but work has been done on
improving the flux conserving Finite Volume implementations, and they’re not yet in the public repository. These are
defined in div_ops.hxx and div_ops.cxx.

The atomic rates are used in sd1d.cxx starting around line 641, and are defined in radiation.cxx and radiation.
hxx.

3

https://github.com/boutproject/BOUT-dev
https://github.com/boutproject/BOUT-dev
http://computation.llnl.gov/projects/sundials
http://computation.llnl.gov/projects/sundials


SD1D Documentation, Release 0.1.0

To run a simulation, enter:

$ ./sd1d -d case-01

This will use the “case-01” subdirectory for input and output. All the options for the simulation are in case-01/BOUT.
inp.

The output should be a whole bunch of diagnostics, printing all options used (which also goes into log file BOUT.log.0),
followed by the timing for each output timestep:

Sim Time | RHS evals | Wall Time | Calc Inv Comm I/O SOLVER

0.000e+00 1 1.97e-02 1.9 0.0 0.2 21.6 76.3
5.000e+03 525 1.91e-01 89.0 0.0 0.6 1.1 9.3
1.000e+04 358 1.30e-01 88.8 0.0 0.6 1.4 9.2
1.500e+04 463 1.68e-01 89.2 0.0 0.6 1.3 8.9
2.000e+04 561 2.02e-01 89.6 0.0 0.6 1.1 8.7
2.500e+04 455 1.65e-01 89.2 0.0 0.6 1.2 9.1

The simulation time (first column) is normalised to the ion cyclotron frequency (as SD1D started life as part of a
turbulence model), which is stored in the output as “Omega_ci”. So each output step is 5000 / Omega_ci = 104.4
microseconds. The number of internal timesteps is determined by the solver, and determines the number of times the
rhs() function was called, which is given in the second column. If this number starts steadily increasing, it’s often a
sign of numerical problems.

To analyse the simulation, the data is stored in the “case-01” subdirectory along with the input. You can use IDL or
Python to look at the “Ne”, “NVi”, “P” variables etc. which have the same names as in the sd1d.cxx code. See
section 6 for details of the output variables and their normalisation. The evolving variables should each be 4D, but all
dimensions are of size 1 except for the time and parallel index (200). Please see the BOUT++ user manual for details
of setting up the Python and IDL reading (“collect”) routines.

1.1 Examples

1.1.1 Case 1: Without heat conduction (Euler’s equations)

Removing heat conduction reduces the system to fluid (Euler) equations in 1D. Note that in this case the boundary
condition (equation [eq:sheath_speed]) is subsonic, because the adiabatic fluid sound speed is

𝑐𝑠 =
(︁𝛾𝑝
𝑛

)︁1/2

𝛾 = 5/3

In this case the sources of particles and energy are uniform across the grid.

1.1.2 Case 2: Localised source region

The same equations are solved, but here the sources are only in the first half of the domain, applied with a Heaviside
function so the sources abruptly change.

4 Chapter 1. Getting started



SD1D Documentation, Release 0.1.0

1.1.3 Case 3: Heat conduction

We now add Spitzer heat conduction, the 𝜅||𝑒 term in the pressure equation. This coefficient depends strongly on
temperature, and severely limits the timestep unless preconditioning is used. Here we use the CVODE solver with
preconditioning of the electron heat flux. In addition to improving the speed of convergence, this preconditioning also
improves the numerical stability.

1.1.4 Case 4: Recycling, neutral gas

The plasma equations are now coupled to a similar set of equations for the neutral gas density, pressure, and parallel
momentum. A fixed particle and power source is used here, and a 20% recycling fraction. Exchange of particles,
momentum and energy between neutrals and plasma occurs through ionisation, recombination and charge exchange.

1.1.5 Case 5: High recycling, upstream density controller

This example uses a PI feedback controller to set the upstream density to 1 × 1019m−3. This adjusts the input par-
ticle source to achieve the desired density, so generally needs some tuning to minimise transient oscillations. This is
controlled by the inputs

density_upstream = 1e19
density_controller_p = 1e-2
density_controller_i = 1e-3

The input power flux is fixed, specified in the input as 20MW/m2:

[P] # Plasma pressure P = 2 * Ne * T
powerflux = 2e7 # Input power flux in W/m^2

The recycling is set to 95%

frecycle = 0.95

NOTE: This example is under-resolved; a realistic simulation would use a higher resolution, but would take longer. To
increase resolution adjust ny:

ny = 200 # Resolution along field-line

Rather than 200, a more realistic value is about 600 or higher with a uniform mesh. An alternative is to compress grid
cells closer to the target by varying the grid spacing dy.

1.2 Non-uniform mesh

An example of using a non-uniform grid is in diffusion_pn. The location 𝑙 along the field line as a function of
normalised cell index 𝑦, which goes from 0 at the upstream boundary to 2𝜋 at the target, is

𝑙 = 𝐿

[︂
(2 − 𝛿𝑦𝑚𝑖𝑛)

𝑦

2𝜋
− (1 − 𝛿𝑦𝑚𝑖𝑛)

(︁ 𝑦

2𝜋

)︁2
]︂

where 0 < 𝛿𝑦𝑚𝑖𝑛 < 1 is a parameter which sets the size of the smallest grid cell, as a fraction of the average grid cell
size. The grid cell spacing 𝛿𝑦 therefore varies as

𝛿𝑦 =
𝐿

𝑁𝑦

[︁
1 + (1 − 𝛿𝑦𝑚𝑖𝑛)

(︁
1 − 𝑦

𝜋

)︁]︁
1.2. Non-uniform mesh 5



SD1D Documentation, Release 0.1.0

This is set in the BOUT.inp settings file, under the mesh section:

dy = (length / ny) * (1 + (1-dymin)*(1-y/pi))

In order to specify the size of the source region, the normalised cell index 𝑦 at which the location 𝑙 is a given fraction
of the domain length must be calculated. This is done by solving for 𝑦 in equation [eq:nonuniform_l].

𝑦𝑥𝑝𝑡 = 𝜋

[︂
2 − 𝛿𝑦𝑚𝑖𝑛 −

√︁
(2 − 𝛿𝑦𝑚𝑖𝑛)

2 − 4 (1 − 𝛿𝑦𝑚𝑖𝑛) 𝑓𝑠𝑜𝑢𝑟𝑐𝑒

]︂
/ (1 − 𝛿𝑦𝑚𝑖𝑛)

which is calculated in the BOUT.inp file as

y_xpt = pi * ( 2 - dymin - sqrt( (2-dymin)^2 - 4*(1-dymin)*source ) ) / (1 - dymin)

where source is the fraction 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 of the length over which the source is spread. This is then used to calculate
sources, given a total flux. For density:

source = (flux/(mesh:source*mesh:length))*h(mesh:y_xpt - y)

which switches on the source for 𝑦 < 𝑦𝑥𝑝𝑡 using a Heaviside function, then divides the flux by the length of the source
region 𝑓𝑠𝑜𝑢𝑟𝑐𝑒𝐿 to get the volumetric sources.

6 Chapter 1. Getting started



CHAPTER

TWO

OUTPUTS

Output quantities are normalised, with the normalisation factors stored in the output files

Table 2.1: Normalisation quantities
Name Description Units
Nnorm Density m−3

Tnorm Temperature eV
Cs0 Speed m/s
Omega_ci Time 1/s
rho_s0 Length m

The following variables are stored in the output file if they are evolved:

Name Description Normalisation
Ne Plasma density Nnorm [𝑚−3]
NVi Plasma flux Nnorm×Cs0 [𝑚−2𝑠−1]
P Plasma pressure

e×
Nnorm×Tnorm

Nn Neutral density Nnorm [𝑚−3]
NVn Neutral flux Nnorm×Cs0 [𝑚−2𝑠−1]
Pn Neutral pressure

e×
Nnorm×Tnorm

The following rates and coefficients are also stored:

Note that the R term is energy which is lost from the system, whilst E is energy which is transferred between plasma
and neutrals. For all transfer terms (S, F, R) a positive value means a transfer from plasma to neutrals.

To diagnose atomic processes, turn on diagnose = true in the input settings (this is the default). Additional outputs
contain the contributions from each atomic process. They have the same normalisation factors as the corresponding
(S, F, R) term.

7



SD1D Documentation, Release 0.1.0

Name Description
Srec Sink of plasma particles due to recombination
Siz Sink of plasma particles due to ionisation (negative)
Frec Sink of plasma momentum due to recombination
Fiz Sink of plasma momentum due to ionisation
Fcx Sink of plasma momentum due to charge exchange
Fel Sink of plasma momentum due to elastic collisions
Rrec Radiation loss due to recombination
Riz Radiation loss due to ionisation (inc. excitation)
Rzrad Radiation loss due to impurities
Rex Radiation loss due to electron-neutral excitation
Erec Sink of plasma energy due to recombination
Eiz Sink of plasma energy due to ionisation
Ecx Sink of plasma energy due to charge exchange
Eel Sink of plasma energy due to elastic collisions

8 Chapter 2. Outputs



CHAPTER

THREE

PLASMA MODEL

Equations for the plasma density 𝑛, pressure 𝑝 and momentum 𝑚𝑖𝑛𝑉||𝑖 are evolved:

𝜕𝑛

𝜕𝑡
= −∇ ·

(︀
b𝑉||𝑛

)︀
+ 𝑆𝑛 − 𝑆

𝜕

𝜕𝑡

(︂
3

2
𝑝

)︂
= −∇ · q + 𝑉||𝜕||𝑝 + 𝑆𝑝 − 𝐸 −𝑅

𝜕

𝜕𝑡

(︀
𝑚𝑖𝑛𝑉||

)︀
= −∇ ·

(︀
𝑚𝑖𝑛𝑉||b𝑉||

)︀
− 𝜕||𝑝− 𝐹

𝑗|| = 0

𝑇𝑖 = 𝑇𝑒 =
1

2

𝑝

𝑒𝑛

q =
5

2
𝑝b𝑉|| − 𝜅||𝑒𝜕||𝑇𝑒

Which has a conserved energy: ∫︁
𝑉

[︂
1

2
𝑚𝑖𝑛𝑉

2
||𝑖 +

3

2
𝑝

]︂
𝑑𝑉

The heat conduction coefficient 𝜅||𝑒 is a nonlinear function of temperature 𝑇𝑒:

𝜅||𝑒 = 𝜅0𝑇
5/2
𝑒

where 𝜅0 is a constant. See section 8 for details.

Operators are:

𝜕||𝑓 = b · ∇𝑓 ∇||𝑓 = ∇ · (b𝑓)

3.1 Heat conduction

Spitzer heat conduction is used

𝜅||𝑒 = 3.2
𝑛𝑒2𝑇𝜏𝑒
𝑚𝑒

≃ 3.1 × 104
𝑇 5/2

ln Λ

which has units of W/m/eV so that in the formula 𝑞 = −𝜅||𝑒∇𝑇 , 𝑞 has units of Watts per m2 and 𝑇 has units of 𝑒𝑉 .
This uses the electron collision time:

𝜏𝑒 =
6
√

2𝜋3/2𝜖20
√
𝑚𝑒𝑇

3/2
𝑒

ln Λ𝑒2.5𝑛
≃ 3.44 × 1011

𝑇
3/2
𝑒

ln Λ𝑛

9



SD1D Documentation, Release 0.1.0

in seconds, where 𝑇𝑒 is in eV, and 𝑛 is in m−3.

Normalising by the quantities in table 1 gives

𝜅̂||𝑒 = 3.2𝑛̂𝑇𝑒
𝑚𝑖

𝑚𝑒
𝜏𝑒Ω𝑐𝑖

where hats indicate normalised (dimensionless) variables.

10 Chapter 3. Plasma model



CHAPTER

FOUR

BOUNDARY CONDITIONS

4.1 Upstream: Symmetry

Symmetry boundary conditions are applied at the upstream side, corresponding to zero flow through the boundary.

𝜕||𝑛 = 0 𝜕||𝑝 = 0 𝜕||𝑇𝑒 = 0 𝑉|| = 0 𝑛𝑉|| = 0

Since the boundary is half-way between grid points, this is implemented as

𝑛0 = 𝑛1

𝑝0 = 𝑝1

𝑇𝑒,0 = 𝑇𝑒,1

𝑉||,0 = −𝑉||,1

𝑛𝑉||,0 = −𝑛𝑉||,1

4.2 Downstream: Sheath

Boundary conditions are applied to the velocity and the heat flux:

• At the left boundary a no-flow condition is applied:

𝑉|| = 0

𝜕||𝑇𝑒 = 0

• At the right boundary is a sheath boundary:

𝑉|| ≥ 𝑣𝑠

𝜕||𝑇𝑒 = 0

where the inequality is implemented by switching from a Dirichlet to a Neumann boundary if 𝑉|| > 𝑣𝑠 in front
of the boundary.

The critical speed into the sheath, 𝑣𝑠 is sensitive to assumptions on the thermodynamics of the sheath, taking the
form: [1]_

𝑣𝑠 =

(︂
𝑒 (𝑇𝑒 + 𝛾𝑇𝑖)

𝑚𝑖

)︂1/2

where 𝑇𝑒 is the electron temperature (in eV), 𝑇𝑖 is the ion temperature, 𝛾 is the ratio of specific heats. For
isothermal flow 𝛾 = 1, for adiabatic flow with isotropic pressure 𝛾 = 5/3, and for one-dimensional adiabatic
flow 𝛾 = 3. Here we are assuming 𝑇𝑒 = 𝑇𝑖 and 𝜕||𝑇𝑒 so take the isothermal case. This therefore becomes:

𝑣𝑠 =
(︁ 𝑝

𝑛

)︁1/2

11



SD1D Documentation, Release 0.1.0

Note: If the sheath velocity is subsonic, then waves can propagate in from the boundary. Their domain of dependence
is outside the simulation domain, so these waves can cause numerical instabilities.

Several boundary conditions are available for the density and pressure, including free boundaries and Neumann (zero
gradient). These are controlled by settings density_sheath and pressure_sheath. Density can have the following
values:

0. Free boundary, linearly extrapolating the value from inside the domain

𝑛−1 = 2𝑛−2 − 𝑛−3

1. Neumann (zero gradient)

𝑛−1 = 𝑛−2

2. Constant flux

𝑛−1/2 = 𝑛−2𝑣−2𝐽−2/
(︀
𝑣𝑠𝐽−1/2

)︀
where the Jacobian factors 𝐽 account for a changing flux tube cross-section area.

Pressure can have the following values:

0. Free boundary, linearly extrapolating the value from inside the domain

𝑝−1 = 2𝑝−2 − 𝑝−3

1. Neumann (zero gradient)

𝑝−1 = 𝑝−2

2. Constant energy flux 5
2𝑝𝑣 + 1

2𝑛𝑣
3

5𝑝−1/2 =
(︀
5𝑝−2𝑣−2 + 𝑛−2𝑣

3
−2

)︀
/𝑣𝑠 − 𝑛−1/2𝑣

2
𝑠

12 Chapter 4. Boundary conditions



CHAPTER

FIVE

NEUTRAL MODEL

The number of equations solved is controlled by the following parameters in the input file:

[NVn]
evolve = true # Evolve neutral momentum?

[Pn]
evolve = true # Evolve neutral pressure? Otherwise Tn = Te model

Neutral density is always evolved, so turning off evolution of momentum and pressure (setting both of the above to
false) reduces the neutral model to a simple diffusion model (next section). By turning on the momentum equation

5.1 Diffusive model

In the simplest neutral model, neutral gas is modelled as a fluid with a density 𝑛𝑛 which diffuses with a diffusion
coefficient 𝐷𝑛:

𝜕𝑛𝑛

𝜕𝑡
= ∇ · (𝐷𝑛∇𝑛𝑛) + 𝑆 − 𝑛𝑛/𝜏𝑛

The temperature of the neutrals is assumed to be the same as the ions 𝑇𝑛 = 𝑇𝑖.Diffusion of neutrals depends on the
neutral gas temperature, and on the collision rate:

𝐷𝑛 = 𝑣2𝑡ℎ,𝑛/ (𝜈𝑐𝑥 + 𝜈𝑛𝑛)

where 𝑣𝑡ℎ,𝑛 =
√︀
𝑒𝑇𝑛/𝑚𝑖 is the thermal velocity of a neutral atom; 𝜈𝑐𝑥 = 𝑛𝜎𝑐𝑥 is the charge-exchange frequency, and

𝜎𝑛𝑛 = 𝑣𝑡ℎ,𝑛𝑛𝑛𝑎0 is the neutral-neutral collision frequency where 𝑎0 ≃ 𝜋
(︀
5.29 × 10−11

)︀2 m2 is the cross-sectional
area of a neutral Hydrogen atom. In order to prevent divide-by-zero problems at low densities, which would cause 𝐷
to become extremely large, the mean free path of the neutrals is limited to 1m.

An additional loss term is required in order to prevent the particle inventory of the simulations becoming unbounded
in detached simulations, where recycling no longer removes particles from the system. This represents the residence
time for neutral particles in the divertor region, which in [Togo 2013] was set to around 10−4s.

13



SD1D Documentation, Release 0.1.0

5.2 Neutral fluid model

A more sophisticated neutrals model can be used, which evolves the neutral gas momentum and energy:

𝜕𝑛𝑛

𝜕𝑡
= −∇ ·

(︀
b𝑉||𝑛𝑛𝑛

)︀
+ ∇ · (𝐷𝑛∇𝑛𝑛) + 𝑆 − 𝑛𝑛/𝜏𝑛

𝜕

𝜕𝑡

(︂
3

2
𝑝𝑛

)︂
= −𝑉||𝑛𝜕||𝑝𝑛 + ∇ · (𝜅𝑛∇𝑇𝑛) + ∇ · (𝐷𝑛𝑇𝑛∇𝑛𝑛) + 𝐸

𝜕

𝜕𝑡

(︀
𝑚𝑖𝑛𝑉||𝑛

)︀
= −∇ ·

(︀
𝑚𝑖𝑛𝑉||𝑛b𝑉||𝑛

)︀
− 𝜕||𝑝 + 𝐹

where 𝜅𝑛 is the neutral gas heat conduction coefficient. This is assumed to be

𝜅𝑛 = 𝑛𝑛𝑣
2
𝑡ℎ,𝑛/ (𝜈𝑐𝑥 + 𝜈𝑛𝑛)

i.e. similar to 𝐷𝑛 for the diffusive neutral model, but with a factor of 𝑛𝑛.

Note that if the diffusion term 𝐷𝑛 is retained in the neutral density (𝑛𝑛) equation, then a corresponding term is needed
in the pressure (𝑝𝑛) equation. To remove these terms, set dneut to zero in the input options, which will set 𝐷𝑛 = 0.

The density diffusion term should not be included if the momentum is evolved, and so is switched off if this is the case.
The continuity equation for 𝑛𝑛 is exact once the flow is known, so the diffusive flux should be contained in the flow
velocity 𝑉||𝑛. To see where this comes from, assume an isothermal neutral gas:

𝜕𝑛𝑛

𝜕𝑡
= −∇ ·

(︀
b𝑉||𝑛𝑛𝑛

)︀
+ 𝑆 − 𝑛𝑛/𝜏𝑛

𝜕

𝜕𝑡

(︀
𝑚𝑖𝑛𝑉||𝑛

)︀
= −∇ ·

(︀
𝑚𝑖𝑛𝑉||𝑛b𝑉||𝑛

)︀
− 𝑒𝑇𝑛𝜕||𝑛𝑛 + 𝐹

Dropping the inertial terms reduces the momentum equation to

𝑒𝑇𝑛𝜕||𝑛𝑛 = 𝐹 = 𝜈𝑚𝑖𝑛𝑛

(︀
𝑉||𝑖 − 𝑉||𝑛

)︀
where 𝜈 is a collision frequency of the neutrals with the ions, due to charge exchange, recombination and ionisation (i.e.
𝜈𝑐𝑥 + 𝜈𝑛𝑛 as used in the calculation of diffusion coefficient 𝐷𝑛). This gives an equation for the neutral flow velocity:

𝑉||𝑛 = 𝑉||𝑖 −
𝑒𝑇𝑛

𝑚𝑖𝑛𝑛𝜈
𝜕||𝑛𝑛 =

1

𝑛𝑛

𝑣2𝑡ℎ,𝑛
𝜈

𝜕||𝑛𝑛

where 𝑣𝑡ℎ =
√︀
𝑒𝑇𝑛/𝑚𝑖 is the neutral thermal speed, as used in the calculation of 𝐷𝑛. This gives a flux of neutrals

𝑛𝑛𝑉||𝑛 = 𝑛𝑛𝑉||𝑖 −𝐷𝑛𝜕||𝑛𝑛

Hence the diffusive flux is included in the balance between pressure gradients and friction in the momentum equation.

14 Chapter 5. Neutral model



CHAPTER

SIX

SOURCES AND TRANSFER TERMS

External sources are

• 𝑆𝑛 = Source of plasma ions

• 𝑆𝑝 = Source of pressure, related to energy source 𝑆𝐸 = 3
2𝑆𝑝

In the simulations carried out so far, these source functions are both constant between midplane and X-point, and zero
from X-point to target.

6.1 Transfer channels

There are several transfer channels and sinks for particles, energy and momentum due to rates of recombination, ioni-
sation, charge exchange, electron-neutral excitation, and elastic collisions with units of m−3s−1:

ℛ𝑟𝑐 = 𝑛2 ⟨𝜎𝑣⟩𝑟𝑐 (Recombination)
ℛ𝑖𝑧 = 𝑛𝑛𝑛 ⟨𝜎𝑣⟩𝑖𝑧 (Ionisation)
ℛ𝑐𝑥 = 𝑛𝑛𝑛 ⟨𝜎𝑣⟩𝑐𝑥 (Charge exchange)
ℛ𝑒𝑙 = 𝑛𝑛𝑛 ⟨𝜎𝑣⟩𝑒𝑙 (Elastic collisions)

where 𝑛 is the plasma density; 𝑛𝑛 is the neutral gas density; 𝜎𝑐𝑥 is the cross-section for charge exchange; 𝜎𝑟𝑐 is the
cross-section for recombination; and 𝜎𝑖𝑧 is the cross-section for ionisation. Each of these processes’ cross-section
depends on the local density and temperatures, and so changes in time and space as the simulation evolves.

• 𝑆 = Net recombination i.e neutral source (plasma particle sink). Calculated as Recombination - Ionisation:

𝑆 = ℛ𝑟𝑐 −ℛ𝑖𝑧

• 𝑅 = Cooling of the plasma due to radiation, and plasma heating due to 3-body recombination at temperatures
less than 5.25eV.

𝑅 = (1.09𝑇𝑒 − 13.6eV)ℛ𝑟𝑐 (Recombination)
+ 𝐸𝑖𝑧ℛ𝑖𝑧 (Ionisation)
+ (1eV)ℛ𝑒𝑥 (Excitation)
+ 𝑅𝑧,𝑖𝑚𝑝 (Impurity radiation)

The factor of 1.09 in the recombination term, together with factor of 3/2 in 𝐸 below, is so that recombination
becomes a net heat source for the plasma at 13.6/2.59 = 5.25eV. 𝐸𝑖𝑧 is the average energy required to ionise an
atom, including energy lost through excitation.

If excitation is not included (excitation = false) then following Togo et al., 𝐸𝑖𝑧 is chosen to be 30eV. If
excitation is included, then 𝐸𝑖𝑧 should be set to 13.6eV.

15



SD1D Documentation, Release 0.1.0

• 𝐸 = Transfer of energy to neutrals.

𝐸 =
3

2
𝑇𝑒ℛ𝑟𝑐 (Recombination)

− 3

2
𝑇𝑛ℛ𝑖𝑧 (Ionisation)

+
3

2
(𝑇𝑒 − 𝑇𝑛)ℛ𝑐𝑥 (Charge exchange)**

+
3

2
(𝑇𝑒 − 𝑇𝑛)ℛ𝑒𝑙 (Elastic collisions)**

(**) Note that if the neutral temperature is not evolved, then 𝑇𝑛 = 𝑇𝑒 is used to calculate the diffusion coefficient
𝐷𝑛. In that case, 𝑇𝑛 is set to zero here, otherwise it would cancel and leave no CX energy loss term.

• 𝐹 = Friction, a loss of momentum from the ions, due to charge exchange and recombination. The momentum of
the neutrals is not currently modelled, so instead any momentum lost from the ions is assumed to be transmitted
to the walls of the machine.

𝐹 = 𝑚𝑖𝑉||ℛ𝑟𝑐 (Recombination)
− 𝑚𝑖𝑉||𝑛ℛ𝑖𝑧 (Ionisation)
+ 𝑚𝑖

(︀
𝑉|| − 𝑉||𝑛

)︀
ℛ𝑐𝑥 (Charge exchange)

+ 𝑚𝑖

(︀
𝑉|| − 𝑉||𝑛

)︀
ℛ𝑒𝑙 (Elastic collisions)

All transfer channels are integrated over the cell volume using Simpson’s rule:

𝑆 =
1

6𝐽𝐶
(𝐽𝐿𝑆𝐿 + 4𝐽𝐶𝑆𝐶 + 𝐽𝑅𝑆𝑅)

where 𝐽 is the Jacobian of the coordinate system, corresponding to the cross-section area of the flux tube, and subscripts
𝐿, 𝐶 and 𝑅 refer to values at the left, centre and right of the cell respectively.

6.2 Recycling

The flux of ions (and neutrals) to the target plate is recycled and re-injected into the simulation. The fraction of the flux
which is re-injected is controlled by frecycle:

frecycle = 0.95 # Recycling fraction

The remaining particle flux (5% in this case) is assumed to be lost from the system. Note that if there are any external
particle sources, then this fraction must be less than 1, or the number of particles in the simulation will never reach
steady state.

Of the flux which is recycled, a fraction fredistribute is redistributed along the length of the domain, whilst the
remainder is recycled at the target plate

fredistribute = 0.8 # Fraction of recycled neutrals redistributed evenly along length

The weighting which determines how this is redistributed is set using redist_weight:

redist_weight = h(y - pi) # Weighting for redistribution

which is normalised in the code so that the integral is always 1. In these expressions 𝑦 is uniform in cell index, going
from 0 to 2𝜋 between the boundaries. The above example therefore redistributes the neutrals evenly (in cell index)
from half-way along the domain to the end.

When neutrals are injected, some assumptions are needed about their energy and momentum

16 Chapter 6. Sources and transfer terms



SD1D Documentation, Release 0.1.0

• When redistributed, neutrals are assumed to arrive with no net parallel momentum (so nothing is added to 𝑁𝑉𝑛),
and they are assumed to have the Franck-Condon energy (3.5eV currently)

• When recycled from the target plate, neutrals are assumed to have a parallel momentum away from the target,
with a thermal speed corresponding to the Franck-Condon energy, and is also added to the pressure equation.
NOTE: This maybe should be one or the other, but not both. . .

6.2. Recycling 17



SD1D Documentation, Release 0.1.0

18 Chapter 6. Sources and transfer terms



CHAPTER

SEVEN

ATOMIC CROSS SECTIONS

Cross sections are approximated with semi-analytic expressions, obtained from E.Havlickova but of unknown origin.
For the purposes of calculating these cross-sections, any temperatures below 1eV are set to 1eV. The charge exchange
cross-section is approximated as:

𝜎𝑖𝑧 =

{︂
10−14𝑇 1/3 if 𝑇 ≥ 1eV
10−14 if 𝑇 < 1eV

with units of [m3/s]. Ionisation is calculated as

𝜎𝑐𝑥 =

⎧⎨⎩
5.875 × 10−12 · 𝑇−0.5151 · 10−2.563/ log10 𝑇 if 𝑇 ≥ 20eV
10−6 · 𝑇−3.054 · 10−15.72 exp(− log10 𝑇 )+1.603 exp(− log2

10 𝑇) if 1eV < 𝑇 < 20eV
7.638 × 10−21 if 𝑇 ≤ 1eV

Recombination rates are calculated using a 9 × 9 table of coefficients so is not reproduced here.

Plots of these cross-sections are shown in figure 1. There are a few anomalies with this: charge exchange always has
the highest cross-section of any process, and ionisation has a jump at 20eV. The ionisation and charge exchange rates
do not depend on density, but recombination does so a typical range of values is shown.

19



SD1D Documentation, Release 0.1.0

0 5 10 15 20 25 30
Electron temperature [eV]

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

R
a
te

 <
σ
v
>

 [
m

3
s−

1
]

Ionisation

Recombination (n = 1018 m−3 )

Recombination (n = 1020 m−3 )

Recombination (n = 1022 m−3 )
Charge exchange

Fig. 7.1: Cross-sections [Thanks to E.Havlickova and H.Willett]

20 Chapter 7. Atomic cross sections



CHAPTER

EIGHT

NUMERICAL METHODS

All variables are defined at the same location (collocated). Several different numerical methods are implemented, to
allow testing of their accuracy and robustness.

8.1 Advection terms ∇ ·
(︀
b𝑉||𝑓

)︀
8.1.1 Flux splitting, MinMod limiter

The default method uses a combination of HLL-style flux splitting and MinMod slope limiting. Terms of the form
∇ · (b𝑓) are implemented as fluxes through cell boundaries:

∇ · (b𝑉 𝑓)𝑖 ≃
1

𝐽∆𝑦

[︀
𝐹𝑖+1/2 − 𝐹𝑖−1/2

]︀
where 𝐹 is the flux. This is calculated by linearly interpolating the velocity to the cell edges

𝑉𝑖+1/2 =
1

2
(𝑉𝑖 + 𝑉𝑖+1)

The field being advected, 𝑓 , is reconstructed from the cell centre values 𝑓𝑖 onto cell edges 𝑓𝐿
𝑖 and 𝑓𝑅

𝑖 :

𝑓𝐿
𝑖 = 𝑓𝑖 −

1

2
𝑠 𝑓𝑅

𝑖 = 𝑓𝑖 +
1

2
𝑠

where the slope 𝑠 is limited using the MinMod method:

𝑠 =

⎧⎨⎩ 0 if sign(𝑓𝑖+1 − 𝑓𝑖) ̸= sign(𝑓𝑖 − 𝑓𝑖−1)
𝑓𝑖+1 − 𝑓𝑖 if |𝑓𝑖+1 − 𝑓𝑖| < |𝑓𝑖 − 𝑓𝑖−1|
𝑓𝑖 − 𝑓𝑖−1 otherwise

In order to handle waves travelling both left and right, flux splitting handles characteristics moving left differently from
characteristics moving right. In general this is problem dependent and computationally expensive, so here we adopt a
simple approximation similar to an HLL splitting2. We assume that the fastest waves in the system travel with speed 𝑎
(the sound speed) with respect to the flow, so that there are waves travelling with 𝑉 + 𝑎 and 𝑉 − 𝑎. If the flow speed
is supersonic then these waves are only in one direction, but for subsonic flows there is a flux in both directions. The
fluxes between cells are calculated using:

𝐹𝑖+1/2 =

⎧⎨⎩ 𝑓𝑅
𝑖 𝑉𝑖+1/2 if 𝑉𝑖+1/2 > 𝑎
𝑓𝐿
𝑖+1𝑉𝑖+1/2 if 𝑉𝑖+1/2 < −𝑎
𝑓𝑅
𝑖

1
2

(︀
𝑉𝑖+1/2 + 𝑎

)︀
+ 𝑓𝐿

𝑖+1
1
2

(︀
𝑉𝑖+1/2 − 𝑎

)︀
otherwise

Hence for subsonic flows the flux becomes 𝑉𝑖+1/2
1
2

(︀
𝑓𝑅
𝑖 + 𝑓𝐿

𝑖+1

)︀
+ 𝑎

2

(︀
𝑓𝑅
𝑖 − 𝑓𝐿

𝑖+1

)︀
, where the second term is a diffu-

sion. When the solution is smooth, 𝑓𝑅
𝑖 ≃ 𝑓𝐿

𝑖+1, the numerical method becomes central differencing and the diffusion
goes to zero as ∆𝑥2. Oscillatory solutions introduce dissipation, and the method becomes increasingly upwind as the
flow becomes sonic.

2 A. Harten, P. D. Lax, and B. van Leer,”On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws”, SIAM
Review, 25(1), pp. 35-61, 1983

21



SD1D Documentation, Release 0.1.0

8.1.2 Nonlinear fluxes

When advecting quantities which are a nonlinear combination of variables, such as 𝑛𝑉||, conservation properties can
be slightly improved by using the following interpolation345:

(𝑓𝑔)
𝑅

=
1

2

(︀
𝑓𝑅𝑔𝐶 + 𝑓𝐶𝑔𝑅

)︀
where superscript 𝐶 denotes cell centre, and 𝑅 right hand side. This method is implemented, using MinMod interpo-
lation for each variable.

8.1.3 Central differencing

Central difference schemes have an advantage over upwind schemes, in that they do not need to take account of wave
speeds. The simple central differencing scheme produces large unphysical oscillations, due to the decoupling of odd
and even points in collocated schemes, but can (usually) be stabilised by adding dissipation. It is implemented here for
comparison with other schemes.

8.1.4 Skew symmetric central differencing

A simple modification to the central differencing scheme improves numerical stability, coupling nearby points67 The
idea is to split the divergence terms into a “skew-symmetric” form

∇ ·
(︀
b𝑉||𝑓

)︀
=

1

2

[︀
∇ ·

(︀
b𝑉||𝑓

)︀
+ 𝑉||b · ∇𝑓 + 𝑓∇ ·

(︀
b𝑉||

)︀]︀
Each of the terms on the right are then discretised with standard 2nd-order central differences. This method can avoid
the need for additional dissipation, or be stabilised with a smaller viscosity than the simple central differencing method.

8.2 Artificial viscosity

Artificial viscosity (viscos input) is implemented as a diffusion of momentum in index space, so that the diffusion
coefficient varies as ∆𝑦2.

𝜕

𝜕𝑡

(︀
𝑛𝑉||

)︀
𝑖

= . . . + 𝜈
[︀
(𝑉𝑖+1 − 𝑉𝑖) 𝐽𝑖+1/2 − (𝑉𝑖 − 𝑉𝑖−1) 𝐽𝑖−1/2

]︀
/𝐽𝑖

where 𝐽 is the Jacobian, subscript 𝑖 indicates cell index, and 𝐽𝑖+1/2 = (𝐽𝑖 + 𝐽𝑖+1) /2.

3 F.N.Felten, T.S.Lund “Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow” J.Comp.Phys.
215 (2006) 465-484

4 F.N.Felten, T.S.Lund “Critical comparison of the collocated and staggered grid arrangements for incompressible turbulent flow” Report
ADP013663

5 Y.Morinishi et al. “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow” J.Comp.Phys. 143 (1998) 90-124
6 S.Pirozzoli “Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates” J.Comp.Phys. 230 (2011)

2997-3014
7 A.E.Honein, P.Moin “Higher entropy conservation and numerical stability of compressible turbulence simulations” J.Comp.Phys. 201 (2004)

532-545

22 Chapter 8. Numerical methods


	Getting started
	Examples
	Case 1: Without heat conduction (Euler’s equations)
	Case 2: Localised source region
	Case 3: Heat conduction
	Case 4: Recycling, neutral gas
	Case 5: High recycling, upstream density controller

	Non-uniform mesh

	Outputs
	Plasma model
	Heat conduction

	Boundary conditions
	Upstream: Symmetry
	Downstream: Sheath

	Neutral model
	Diffusive model
	Neutral fluid model

	Sources and transfer terms
	Transfer channels
	Recycling

	Atomic cross sections
	Numerical methods
	Advection terms (bV||f)
	Flux splitting, MinMod limiter
	Nonlinear fluxes
	Central differencing
	Skew symmetric central differencing

	Artificial viscosity


